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SIMULATION OF VERTICAL TRANSPORT OF HEAT AND
SOLID PARTICLES IN FLUIDIZED-BED APPARATUS

Yu. S. Teplitskii and I. I. Yanovich UDC 66.096.5

An equation for simulating nonstationary vertical transport of heat and solid particles in
nonhomogeneous fluidized beds is proposed.

The trends in the transport of solid particles and the related heat transport* throughout the fluidized
bed space strongly affect the operating efficiency of apparatus based on fluidization techniques. Therefore,
the mixing of particles and internal heat transfer in such a system invariably engage the interest of resear-
chers [1-4].

Until recently, the most commonly accepted vertical mixing scheme was based on the classical diffu-
sion model, which describes the process by means of a single parameter —the coefficients of vertical diffu-
sion (dispersion) of particles [1]. However, this model cannot describe the experimentally observed nonsta-
tionary mixing curves [5].

It was proposed in [6], probably for the first time, to describe the process by a hyperbolic diffusion
equation that would take into account the finiteness of the particle velocities. A system of two hyperbolic
first-order equations was used earlier in [7] for describing the vertical mixing of the solid phase. This sys-
tem was based on the assumption that the transport of particles throughout the bed was purely convective
(circulatory) in character: upward in the bubble trails and downward in the rest of the emulsion phase. In
this, the particle velocities in both phases were, naturally, limited. The necessity and importance of taking
into account the finiteness of the velocity of particles was shownin [5, 8] by direct comparison between the
experimental mixing curves and those calculated by means of hyperbolic equations [6, 7]. Using the results
of an analysis of the fluidization process based on methods of the thermodynamics of irreversible processes,
Liu and Gidaspow have derived [3] a hyperbolic equation of diffusion to describe vertical solid phase transport.
It has been suggested in [4] to use three first-order hyperbolic equations to describe vertical mixing of par-
ticles in a bed slowed down by a bunch of pipes. An additional equation (in comparison with the system given
in [7]) describes the downward core motion of particles at the wall. Analysis shows that none of the above
models comprises all the basic characteristics of the mixing process (see below).

* Tt is admissible to assume that the heat transfer is due entirely to the motion of particles in nonhomogene-
ous fluidized beds because of the large difference between the volumetric specific heat values of the gas and
the particles. The transport of heat and the transport of disperse material and therefore characterized by
the same trends, so that, for brevity, we shall subsequently make no special distinction between these pro-
cesses and use only the term "mixing" (diffusion of particles) or rthermal conductivity" of the bed.
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The parameters of these models, as a rule, do not reflect all of the actual physical processes, which
makes it impossible to describe the diffusion of particles in a wide range of experimental conditions. The
two-concentration model of mixing which is presented in [9] takes into account, besides the finiteness of the
particle velocity, also other important characteristics of the process, which are not considered all together
in other schemes: convective particle transport, exchange between the ascending anddescending particle flows,
and turbulent particle diffusion in the descending emulsion phase, caused by passage through a layer of gas
bubbles. The distinguishing feature of this model is that it is suitable for describing both horizoutal and ver-
tical mixing, as it establishes a close mutual relationship between them. The present study is a continuation
of [9], and its aim is to determine the possibility of describing vertical particle mixing and heat transport in
nonhomogeneous fluidized beds by means of a second-order hyperbolic equation.

The following system of equations is used in [9] to describe vertical mixing of particles in a nonhomo-
geneous fluidized bed:

dc Oc 0% 0% T*yl 0%
A 1 1 At* 1 + out* S (ADMC_ 1 1
s T T Y A e T )
: { . 0 0 dc ac;
Bl (14w ot B —u T = pa e

We can readily derive from (1) an equation for calculating the vertical profile of the mean particle density
¢ = (Acy + Bey)/(A + B):
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It has been established in [9] that Eq. (2) yields wave solutions and generally determines three different
density waves. It is readily seen that, because of its complexity, (2) is not suitable for practical application.
We shall, therefore, attempt to derive from it a simpler equation which would make it possible to simulate
vertical disperse material and heat transport in a fluidized bed.

It was shown in [10] that, for uyy =u = 0; T* = 0, system (1) has solutions which rapidly degenerate with
respect to the parameter 8 (actually, for ,BHZ/ Dy = 10, they no longer depend on BHZ/DV and are transformed
into the solutions of the classical diffusion equation). As a rule, ;S’Hz/DV > 10 in fluidized-~-bed apparatus [10].
This fact made it possible to describe in [9, 11] the horizontal mixing of particles and heat transfer in the bed
by a hyperbolic second-order diffusion equation (obtained from (2) for w =u = 0, by substituting Dy for Dy),
rather than by a third-order equation of the type (2) for u; =u = 0; g— =, Considering this, we shall attempt
to derive from (2) a certain second-order equation for describing the vertical movement of particles, using
as a basis the behavior of (2) for g — «.

The condition 8 — % in (2) lowers its order and leads to a second-order equation:

oc 0% | 0% 0%
—_— - T U — —

T = D, . 3)
o o2 Y atox Y dxz

An analysis of this equation based on the method of characteristics is given in [9]. Direct utilization of (3) for
describing vertical mixing of the disperse material is inadmissible, if only because it does not contain the
axial "Taylorian" diffusion of particles with the coefficient w?/B (A + B) (see the coefficient in front of déc/dx?
in (2)). This diffusion mechanism can be substantial in systems with intensive circulation flow. Therefore,
our aim here is to derive an equation similar to (3) that would account for the "Taylorian" particle diffusion.
The validity of the assumptions made will then be checked by comparing the theoretical and the experimental
diffusion curves for heated particles.

Consider the following equation:

Oc u? 1/ &% &% w 1 o
— T | [ —— iy ——|= | D, . (4)
T [ +ﬁ(A+B)DVJ<0t2+ul 0t0x> [ V+5(A—{—B)J ox?
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It satisfies the rational requirements for g — «, t— o, 7%~ 0, accounts for the axial "Taylorian" diffusion
of particles, and correctly describes the velocities of the forward (wf) and reverse (wy) waves in the descen-
ding emulsion phase (see [9]). It is true that (4) does not contain the third wave with the velocity u, (the velo-
city of bubble trails). However, considering the smallness of B (in comparison with A), which is usual for a
fluidized bed, we can assume that the above fact is of no great consequence, all the more so as the balance
ascent of particles in gas bubble trails is taken into account in (4).

Let us explore the possibility of using Eq. (4) to describe the vertical transport of heat and solid parti-
cles in a fluidized bed. Consider the following boundary-value problem for (4), written for the case of verti-
cal heat transport (c—~ T, 8 — «, Dy— ay):

T &T &7 2 &T )
—— a y
o T ( PrE atax) [ vh a(A+iB)] o
Ty, 0<x<h,
T, T TO, N .
T, 9=y g xmh SR =0 ©
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J=e (Pt(at +ulax)

We shall use the following auxiliary system of equations for solving the stated problem, which simulates
the actual experimental conditions with regard to critical heat transport in a fluidized bed on the basis of the
two-dimensional thermal pulse method (see, for instance, [12]):
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1 W (wg, wy are the forward and the reverse wave velocities, respectively, which are defined by (5)). It can
2
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The coefficients A?, B?, and o? can readily be determined so that Eq. (8) corresponds exactly to (5). We use
the condition A’B? /o °(A + B) @T*. This condition, together with the one written earlier, AY+BY=A +B;

A% = B%,, determines A%, B, o'’ unambiguously:
we —EBER _ge_apue)/ B L, ©)
dqr [ 2x u"f) 4
T
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For system (7) with the boundary conditions

and transform (8) into Eq. (5).
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To(t, 0)=Ty(t, 0); Ti(t, H)y=Ts(t, H),
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Fig. 1. Comparison between the experimental response func-
tion and the theoretical functions based on the hyperbolic mo-~
del (¢ = 0.92; R = 0.01: 1) experimental function; 2) E = ay +
u?/a (A +B) =52 ecm’/sec; o = 0.06 1/sec; 3) E = 45 em?/sec;
a =0.09 1/sec; 4) E = ay = 32 cm¥/sec; @ = =; 5) E = 45 cm?/
sec; dgoff = 0.61 1/sec (Van Deemter's circulation model [7]).
Quartz sand, d = 0.60 mm; uy = 20 cm/sec; ug = 52 cm/sec;

H = 51 cm; checkerboard bunch of horizontal pipes spaced at
60 mm vertically and horizontally; wg = 6.6 cm/sec; u = 1.2
cm/sec; 7* = 0.89 sec; t is given in seconds.

a solution has been obtained in [13], which has the following form for the mean temperature T, averaged with
respect to the two phases:

where
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With an allowance for the equality AOWf =B%w, = u’, the boundary conditions in (10) stipulate the absence of
a heat flux at the sections x = 0; H. Therefore, Eq. (7) with boundary conditions (10) corresponds with an ac-
curacy to specifications to system (5)-(6), the solution of which can therefore be obtained from (11} with an
allowance for Eq. (9). The thus found solution of the stated boundary-value problem (5)-(6) has the following

forim:
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2 . Fig. 2. Comparison between the experi-
mental response function and the theo-

7/
retical response functions based on the
parabolic model (¢ = 0.92; R = 0,01): 1)

/F i f, //045.) mer | B experimen‘tgd function (see Fig. 1); 2)
v //n s E =104 cm®/sec; 3) 50; 4) 45; 5) E =32
/ A Ny cm?/sec.
[
o » 20 20 ¢
where
Pe* :._EP,T,*L}L- Fo* = (Pzr*a»v_- Fo = Lm"_,
H H a2

The experimental curves of vertical diffusion of heated particles obtained in [12] were compared with
those calculated by means of a computer on the basis of (12). Some typical results of the comparison are
shown in Fig. 1. The coefficient of vertical thermal diffusivity of the bed a was found with respect to the re-
lated coefficient of horizontal thermal diffusivity ay, (see Fig. 3 in [11]) by means of the method described in
[9]. The relaxation time 7* was calculated by using the processing of experiments on horizontal heat trans-
port [9, 11] on the basis of the expression 7* = ap/ v%. The velocity of the descending circulatory motion of

particles u; = 1.2 cm/sec was determined by using the expression for the wave velocity wf = 1/ %}L + —31— ul 4+

:—;- uy (the value of wy is readily determined [9] with respect to the lag time (t;) of the experimental response

function (Fig. 1)). The condition for the best agreement between the experimental curve and those calculated
by means of (12), which, for the sake of simplicity, was estimated with respect to the height of the first "peak"
of the experimental response curve, provided the sought values of the interphase exchange coefficient and,
thus, of the effective coefficient of vertical thermal diffusivity (curve 3 in Fig. 1a for @=0.09 1/sec; E =45
cm?/sec). For comparison, Fig. 2 shows the results obtained in calculating the response function by using

the solution of the parabolic equation of thermal conductivity:
_sinnnR cosnak

f=R-+2 i exp (— n2m2 Fo), (13)
n=1

na

which is obtained from (12) by limit passage to Fo* =Pe* =0 (r* = 0; w; = 0). It is evident that the hyper-
bolic equation of thermal conductivity provides a significantly better description of the experimental relation-
ships (see Fig. 1) than the parabolic equation (Fig. 2). An important fact should be noted: The coefficient of
vertical dispersion of heated particles (the effective coefficient of vertical thermal diffusivity of the bed) E =
50 cm?/sec, found by means of the classical (parabolic) equation of thermal conductivity and the well-known
two-dime nsional thermal pulse method [14], proved to be very close to ay + u¥a(A +B)=45 em¥sec (for a =
0.09 1/sec). This agrees with the conclusion reached in [11]: The horizontal thermal diffusivity coefficients
determined by means of the hyperbolic and the parabolic equations of thermal conductivity were definitely not
different from each other.

Figure 1b also provides a comparison between the experimental curve of vertical heat transport and the
curve based on solution (11) for Van Deemter's circulation model [7], whose equations are obtained from (7)
by using the substitution Al Ay B'— B Wi (Up)egps Wo Ups ozv°—> aoff Ap(ty)eff = Bop; Ag+ Bo=A +B).t
The value of (u).¢ Was wf = 6.6 cm/sec, while the bubble (trail) velocity u, was assumed to be 100 cm/sec.
The coefficient o q¢r Was determined from the condition E = A%(ui)éff/ aoff(A +B) =45 cm?/sec, which actually
reduces the effective coefficient of vertical thermal diffusivity of the bed to the axial coefficient of "Taylorian"
diffusion of heated particles. For the given specific case, aeff = 0.61 1/sec. It is evident from Fig. 1 that the
circulation model of vertical mixing, while describing the initial time lag t;, renders the subsequent behavior

+ It should be noted that the response functions of the circulation model can also be calculated by means of

tE AyB,

*

* *
(12), where per — (e el T TE L

7 ; T2 E=A4} X (u)5f%s(A -+ B).

416



of the thermal curve much less adequately than model (5). t

In conclusion, we shall make a few remarks concerning the comparison between the experimental and
theoretical mixing curves for heated particles. The statistical nature of the process manifests itself most
strongly in vertical mixing, which results in a certain (often considerable) difference between the response
functions obtained under identical operating conditions, but at different times. However, the basic features
of these functions — existence of the characteristic time lag t; and the accompanying sharp temperature jump
(Figs. 1 and 2) — remain unchanged. The proposed model describes primarily these characteristics in an
adequate manner.

In contrast to parabolic equations of diffusion and thermal conductivity, the solutions of a hyperbolic
equation of the type (4) or (5) reflect fairly accurately the form of the initial temperature (or density) distri-
bution. It is clear that the initial conditions prevailing in experiments can differ to a certain extent from those
assigned in (6). This must be taken into account in analyzing the results of comparison between the experi-
mental and the theoretical curves.

NOTATION

a,and ap, coefficients of the vertical and the horizontal thermal diffusivity of the bed, respectively;
A, portion of the bed volume occupied by the descending continuous phase (phase A); B, portion of the bed
volume occupied by bubble trails (phase B); A + B = 1 —ep; Cg, specific heat of solid particles; c; and ¢y,
densities of labeled particles in phases A and B, respectively; d, particle diameter; Dyx, element of the co-
efficient tensor of turbulent particle diffusion in phase A; Dy = ADy /(A + B), coefficient of vertical diffusion of
particles; Dy, coefficient of horizontal diffusion of particles; E = ay + uy/o (A + B), effective coefficient of
vertical thermal diffusivity of the bed; h, width of the heat pulse; H, bed height, J = Q/pCg; Q, thermal flux
density; R =h/H; t, time; Ty and Ty, particle temperatures in phases A and B, reapectively; u; and uy, velo-
cities of the descending emulsion phase and of the bubble trails, respectively; Ay = Buy, = u, circulation velo-
city of particles with respect to the entire cross section of the apparatus; ug, filtration rate; ugy, incipient
fluidization rate; v, horizontal wave velocity, wg and w, velocities of the forward and reverse waves defined
by (5), respectively; x, vertical coordinate; o and g, interphase exchange coefficients; £}, bubble density
in the bed; ¢ =x/H; p, fluidized bed density; 7*, relaxation time; ¢ =1 +u?/a(A + Blay; 6 = 6/R.
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CALCULATION OF THE EFFECTIVE PERMITTIVITY
OF A TWO-PHASE STREAM

A. P. Vasil'ev UDC 532.529.5

A calculating equation is proposed for the effective permittivity of bubbly and gas—drop
streams.

The methods of electrical conductivity and inductance [1], which are widespread in the diagnostics of
two-phase flows, cannot be used to measure the volumetric content of the gaseous phase in a stream of di-
electric liquid. In this connection one can use a capacitive method based on measuring the capacitance of a
capacitor placed in the two-phase stream.

The dependence of the effective permittivity of a two-phase stream on the volumetric content of the dis-
perse phase in it will be decisive for the use of this method. This dependence must also be at hand in many
calculations of electron—ion technology and in problems of the electrohydrodynamics of two-phase flows [2, 3].

We note that methods are known in the literature {4-6] for calculating the coefficients of effective conduc-
tivity of heterogeneous (nonflowing) media. Unfortunately, they ignore the possibility of reorganization of the
structure of a two-phase stream with an increase in the volumetric content of the disperse phase. For exam-
ple, the change in the mode of flow of a bubbly stream has a crisis character, so that the coefficients of con-
ductivity should undergo a discontinuity at some limiting attainable volumetric bubble content.

Let us consider a disperse stream of two dielectric media. Let the disperse phase be present in the
form of equal-sized spherical drops or bubbles and be characterized by a permittivity €,, while the carrier
(dispersion) phase is characterized by a permittivity £,. We assume that the fluctuations in volumetric con-
tent, number density, and sizes of the disperse particles caused by turbulent pulsations and processes of
particle fragmentation and coalescence do not exceed their average values ¢, N, and R by many times.

Let a small plane capacitor be placed in the two-phase stream so that the functions ¢, N, and R can be
taken as uniform in the space between its plates. At the same time, the volume of the capacitor is represen-
tative, i.e., abh > R3, so that the nonuniform electrostatic field due to the disperse particles can be averaged.

Let the distance a between the capacitor plates be a multiple of 2R. We divide up the region of the two-
phase stream in it into layers of thickness 2R by equipotential planes. In the resulting system of a/?R series-
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